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ABSTRACT Machine-learning  in  viticulture  has  the  potential  to  reduce  costs  and  increase  efficiency
through the automated detection of pests and diseases in vineyards. However recent studies have mostly
been either siloed in laboratory settings or using models that require compute resources inappropriate for
farm conditions. This review looks at recent studies in the field of ML for pest and disease detection and
determines the technologies used, their  effectiveness  and their practical  use in a real-world viticultural
system. 

The review finds that current models, especially in computer vision, can be split in two rough groups. With
some light weight models, such as YOLOv5, excelling at object detection and bounding in real-time, while
other  more complex models  to classify pathogens require  significant  compute resources  in  image pre-
processing or classification.  We also find a lack of standardised data-sets or testing, with many models
being proof of concept only and working on their own datasets.

The review thus presents a framework for future research whereby pest detection could be split into a two
tier  model.  With  simpler  models  running  in  real-time  on  edge  devices  that  can  detect  and  create
standardised image datasets of vines or vine structures. These datasets being images only could then be
either processed on farm or in the cloud by more specialised complex models aimed at detecting specific
pathogens.  This  also solves  the problem around model  comparison in future research  by standardising
training and testing datasets.

INDEX TERMS Agricultural Automation, Agricultural Technology, Classification Models, Cloud Computing, 
Computer Vision, Disease Detection, Edge Computing, Edge Devices, Image Processing, Machine Learning, Model 
Comparison, Pest Detection, Precision Agriculture, Real-time Detection, Research Framework, Standardized Datasets,
Viticulture

I. INTRODUCTION
Viticulture  is  the  cultivation  and  study  of  grapevines,

with the grapes themselves being used primarily for wine,
table  grapes  and  raisin  production.  The  estimated  total
vineyard area of all types was 7.3 mHa in 2022 [1] while
the industry had a total  global value of 340 billion USD
representing 0.4% of global GDP [2] Therefore the industry
has a major economic impact all around the world, not only
in  countries  that  grow  grapes  but  also  industries  that

consume grape products. Grapevine pests have a significant
impact  on  the  viticultural  industry  with  the  most  recent
assessment  from  Wine  Australia  from  2010  putting  the
economic impact at $250 million AUD for Australia alone
[3]. The use of machine-learning (ML) and data-science in
viticulture  represents  an  evolving  tool  for  increased
efficiency  and lower costs by automating expensive field
work  for  growth  monitoring,  pest  detection  and  yield
estimation  that  in  the  past  has  been  done  by  expensive
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manual labour.
Recent reviews have focused on the use of ML in both

estimating  grapevine  vegetative  growth  and  yield
estimation  [4],  [5]  with  good  results  in  this  respect,
however, there has been no recent review of the use of ML
and data-science to detect pests and diseases in vineyards.
Mohimont  et al. [5] point out in their review the current
challenges of moving from lab-based models to the field
and importance of future work taking into account the noisy
nature of all farm based data. Also these environments are
prone  to  having  significant  network  connectivity
challenges, transferring large amounts of data to the cloud
is a difficult prospect. It is with this focus and lens that this
review will look at the current state of ML and data-science
research in pest detection. 

Most studies in the field focused to computer-vision to
determine pest and disease incidence with only two [6], [7]
utilising  different  sensor  data,  audio  and  environmental
sensors respectively. Much of the current work centres on
lab  based  imagery  with  models  trained  in  controlled
environments on one specific  pathogen. The relevance of
this to a more practical farm system is also discussed with
many of  these models  requiring more  compute resources
than is  practical.  However  a  few real-time models  based
upon edge devices suitable for the field were found with
most running YOLO based object bounding neural network
models. These are generally more lightweight and suitable
to run on devices such as commodity smartphone hardware.
However  the  review found  that  these  models  sometimes
lack the precision of more complex deep CNN models that
are  trained  on  one  particular  pathogen.  Thus  the  review
proposes a framework for future research focusing on a two
tier  approach,  with  light  weight  object  bounding  models
used in the field to create image data-sets of each individual
vine or vine structure. These images could then be passed
on to a more complex model running in the cloud or farm-
based computer which is tuned to specific pathogen types
of relevance. This solves several problems around limited
compute  and  noisy  field  data  while  also  simplifying
research by providing standardised data types with which
models can be tested and compared.
1) METHODOLOGY

This  review  will  focus  on  studies  published  in
predominately  2022/2023  with  a  few  highly  relevant
studies selected from 2021. These studies were classified
and compared (see Table 1) for their relevance to an on-
farm  pest  detection  system.  A  framework  was  then
established (see Figure 2) and presented for future research.

II. Literature Review
Grapevines pathogens are varied both in the domain of

life  they  come  from  and  the  many  symptoms   and
pathologies that present on the vine. As such the best ML
approaches to use in the detection of these pathogens varies
considerably based upon the pathogen that is of interest. In

the following review we outline the different  approaches
taken  for  different  pathogen  types,  their  accuracy  and
suitability  for  use  in  real-time  applications.  Table  1
organises the studies in this review by their technology mix
and their practical relevance to on-farm settings, the green
highlighted  studies  are  real-time  and/or  edge  device
compatible  and  are  therefore  the  most  relevant  to  this
review.

A. FUNGAL CANOPY PATHOGENS
Generally fungal pathogens of grape vines are some of

the most detrimental to a vineyard during any one growing
season. The main pathogens include Downy Mildew (DM)
(Plasmopara  viticola),  Powdery  Mildew  (PM)  (Erysiphe
necator) and Botrytis (Botrytis cinerea). Gutiérrez et al. [8]
took  841  images  of  grapevine  leaves  split  into  three
classifications: infected with DM, infected with Spider Mite
and healthy. Spider Mite and DM have remarkably similar
pathologies  on  grapevine  leaves  and  thus  their
discrimination  is  hard  even  for  domain  experts.  Multiple
models were then trained on the data as both a multi-class
and  binary  classifier  between  each  possible  class.  The
binary classifiers are of limited value in a wider context, as
for every variable introduced one must train a new model
which could get  computationally expensive.  However the
multi-class  model  demonstrated  accuracies  of  0.94  (F1
score)  on the 25% holdout  testing data from the dataset.
However this study was significantly limited in its practical
scope,  although  the  images  were  taken  in  the  field  all
computation was done in the lab and the resulting CNN was
too  computationally  expensive  for  real-time  edge
applications.

Alternatively both Hernández et al. [9] and Zendler et al.
[10] worked  on lab  images  of  leaf  discs  inoculated  with
DM spores. In both these works leafs were taken from the
field and processed in the lab, they were cut into leaf discs
and then inoculated with DM spores and left to sporulate.
Zendler  et  al. [10]  used  RGB  images  only  however
Hernández  et al. [9] utilised both RGB and hyperspectral
imagery on the leaf discs. Interestingly the studies differed
on their approach to measuring DM severity, with Zendler
et al. [10] training a SCNN and Hernández et al. [9] using
the Otsu Method, which is a form of discriminant analysis.
Both  studies  found  good  correlation  with  manually
annotated  expert  analysis  of  the discs,  however  the  Otsu
method  requires  orders  of  magnitude  less  compute
resources  as  is  thus  of  interest  in  edge  applications.
Hernández  et al. [9] also trained a CNN on hyperspectral
imagery to detect DM infection after three days, before it is
visible to the human eye.  They had good success  at  this
asymptomatic  detection  which  correlates  well  with  other
studies using hyperspectral imagery to detect asymptomatic
infections  [11], [12], [13]. 

While  the  previous  studies  used  variants  of  computer
vision to detect fungal outbreaks Hnatiuc  et al. [7] used a
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vast  IOT  sensor  network  to  monitor  and  predict  when
environmental conditions were conducive to fungal growth.
An  interesting  approach  that  is  predictive  instead  of
reactive and novel for all pathogens in the recent literature.
Interestingly this approach used traditional ML in the form
of  a  Random  Forest  classifier  and  was  extremely
lightweight and computationally efficient while also having
a near 98% accuracy on the obtained dataset. However the
study is limited in its  wider  predictive  power due to the
limited amount of environmental conditions observed while
also only being able to observe an outbreak of PM and no
other pathogens. The studies real value, however, is in it’s
discrimination of  variables  associated with fungal  growth
and the computational efficiency of the process.

B. INSECTS
To date there has not been much work done utilising ML

to  detect  insects  in  vineyards  in  contrast  to  the  wider
agricultural  field,  which  has  seen  significantly  more
investment with the creation of standardised data-sets and
testing [14].  However  there  has  recently  been  significant
work in Portugal to design a complete date pipeline for an
android application to process and identify insects on sticky
traps  [15],  [16],  [17].  The  pipeline  first  uses  traditional
computer  vision  techniques  to  focus,  correct  and
standardise smartphones picture of sticky traps taken in the
field [15].  This was then accurate enough to utilise these
photos to train a ResNet50 model to detect and classify five
different  insect  types  relevant  to  the  viticultural  area  the
app was designed for, with accuracies ranging from 82 –
99% depending on class, however the major downside was
the  models  took  over  62  seconds  to  run  on  a  modern
smartphone  [16]  .  ResNet50 is  a  variant  of  a  CNN first
made available in 2015 that excels at object and boundary
detection,  the model  is  also easy to  fine-tune to  specific
object/s of  interest  [18].   This pipeline was then used to
build  an  android  application  ‘EyeOnTraps’  that  using
pictures taken on device, counts and catalogues insect types
found at each sticky trap [17].  This shows the ability for
edge devices to run accurate computer vision models while
also  stressing  how  difficult  it  can  be  to  present  the
information in a practical way to grape-growers.

C. GRAPEVINE TRUNK DISEASE (GTD)
GTD’s are a pernicious pathogen of grapevines in that

they kill vines, can be largely asymptomatic and there are
limited  control  measures  with  the  best  control  being
prophylactic,  centreing  around  pruning  hygiene  and
infection prevention [19]. Detection and removal, therefore,
of GTD’s in the vineyard is vital to viticulturalists, however
their  stochastic  asymptomatic nature  makes  this  difficult.
Pérez-Roncal  et  al. [11]  and  Calamita  et  al. [13]  used
hyperspectral imaging to detect asymptomatic infections of
Esca (a fungal trunk disease) and Armillaria (a fungal root
disease) respectively. Hyperspectral images capture a much
larger spectrum of wavelengths than just visible light and

can thus contain information not visible to the human eye. 
The authors of both studies extensively used traditional

data-mining  techniques  to  quantise  the  spectral  data  and
used clustering to find the most predictive and correlative
variables. They then trained traditional classifiers with good
success  at  detecting  the  asymptomatic  infections,  Naive
Bayes had a 75% accuracy for Armillaria [13] and partial
least square discriminant analysis with an accuracy of over
95% for  Esca  [11].  Its  important  to  note  that  that  these
techniques  were  both  used  because  the  process  yielded
information  about  what  in  the  hyperspectral  images  was
predictive,  which  was  of  interest  to  the  authors.  If  deep
learning was used the models are ‘black box’ and no useful
variables  would  be  found.  However  future  work  could
utilise deep learning models  on hyperspectral  data which
could reduce  pre-processing,  increase  classification speed
and make it practical for real-time field applications.

Symptomatic  GTD  infection  such  as  Eutypa  Dieback
show predictable foliar symptoms especially in spur pruned
vines and are thus easier to detect. Tang et al. [20] utilised
smartphones  mounted  to  a  trailer  and  towed  through  a
vineyard  to  detect  Eutypa  dieback  severity  in  a  Shiraz
vineyard.  They trained a YOLOv5 model  on over 15000
annotated images that ran at over 5 frames a second on a
low-end modern smartphone with an accuracy of 85%  in a
multi-class  severity  estimate.  YOLO  models,  first
introduced in 2016, are shallower CNN’s than ResNet and
therefore  more computationally efficient  but still  perform
well at object bounding and detection -  [21]. Figure 1. [20]
shows the resulting imagery and bounding generated by the
smartphone in real time. This work shows the promise of
real  time  pathogen  detection  and  mapping  in  a  vineyard
under field conditions using commodity hardware.

FIGURE 1. Smartphone imagery with YOLOv5 detection bounding and 
severity estimation [1]

Finally  work  done  by  Rudenko  et  al. [22]  is  of
significant interest as it is also one of only four real-time
models  in  this  review.  Working  with  a  semi-automated
grapevine grafting assembly line the authors created a fuzzy
classifier  to  look  at  lesions  within  cutting  scions.  The
classifier  look  for  trunk  diseases  or  lesions  within  the
cuttings  to  assess  their  suitability  for  grafting.  Being  a
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compute  efficient  fuzzy  classifier  the  model  was  able  to
work  in  real-time  with  the  assembly  line  drastically
reducing grafting time. However this work was done in a
factory based setting with automated standardised imagery
capture  meaning  the  actual  implementation  does  not
translate well to on-farm conditions.

D. VIRUSES
Similar  to  GTD  infection  grapevine  viruses  can  have

both asymptomatic and symptomatic pathologies while also
having  limited  control  measure  apart  from  detection,
removal  and  hygiene  [23].  Sawyer  et  al. [12]  used
hyperspectral imagery, again in a lab environment, to train
both a CNN model and a Random Forest model to classify
leaves  infected  asymptomatically  with  grapevine  leafroll-
associated  viruses  and  grapevine  red  blotch  virus.  As  in
[11], [13] Sawyer  et al. [12] had to utilise significant pre-
processing  for  the  random  forest  model  to  quantise  the
spectral data and find the most highly associated variables
while  the  CNN  model  was  just  trained  on  standardised
images.  The  random  forest  model  saw  an  accuracy  of
82.8% while the CNN saw an accuracy approaching 87%.
This again shows the power of deep learning to utilise extra
information  in  hyperspectral  images  and  classify
asymptomatic grapevine etiologies. However this study was
again  limited  in  that  it  was  in  a  lab  setting  only,  the
practicality of such a system needs to be proven in the field
in future work. 

Wang  et  al. [24]  had  a  novel  strategy  for  identifying
grapevine  virus  A  infection  in  Shiraz  vines  by  mapping
canopy density over time throughout the growing season.
A drone was flown over the vineyard and various times and
the data processed back in the lab by an extremely simply
Random Forest Classifier. The classifier identified pixels as
either grapevine, soil, shadow or weeds with each class in
the training set only containing 5-7 pixels. The model was
then accurate enough to identify the canopy spread in pixels
over time between flights. The delayed bud burst caused by
grapevine  virus  A  could  then  be  easily  identified  in  the
data.  The  model  was  extremely  lightweight,  simple  and
usable on field  data,  showing that  creativity  and domain
knowledge can lead to significant results.

E. BIRDS
Unique in this review is the work by Cinkler et al. [6] in

that they used audio to train their model to detect birds in
the vineyard. Birds are significant pests in vineyards with
netting and other associated preventative measure costing
wineries significantly [25]. Cinkler et al. [6] utilised a two
tier  approach to their system with a simpler SVM model
running on the sensors within the vineyard, once this model
hit a certain threshold of certainty about a particular bird
call  it  then  sent  the  information  up  the  cloud.  There  a
second  CNN  model  was  then  utilised  to  gain  further
confidence on the species  of bird call  detected. This two
tier system was shown to be computationally and network

efficient  for  the  limited  environment  on-farm as  well  as
being accurate enough to detect starlings in near real-time.
The  two-tier  idea  is  conducive  to  further  study  in  it’s
applicability  to  other  edge  applications,  it  may  translate
well to visual data but more work is needed in this regard. 

F. LESIONS AND ANOMALOUS BERRIES
Another  way of  thinking  about  pathogens  is  that  they

create  a  disease  ‘state’  within  the  grapevine,  this  state
varies in appearance from a ‘healthy’ or ‘normal’ state of a
grapevine.  This  difference  can  then  be  used  to  train  a
computer vision model to detect these diseased or different
states. This method does not detect a specific pathogen as
in the previous studies but merely a state that differs from
normal and therefore could potentially detect any pathogen
whether known or unknown while also limiting re-training
every time a new pathogen is added to detection software.
This  method  has  been  used  to  detect  changes  both  at  a
bunch [26] and grape [27] level. 

Interestingly  both  these  studies  differed  in  their
fundamental  approach  with  Pinheiro  et  al. [26]  hand
annotating  two  bunch  classes,  healthy  and  damaged  and
training  3  different  YOLO  models  to  multi-classify  the
images.  The  classification  accuracy  was  high  at  97%
however the mAP was low, meaning the model sometimes
failed  to  accurately  detect  the  bunches  themselves.  In
contrast Miranda et al. [27] simplified the training schema
in that they trained a convolutional variational autoencoder
on only healthy berries and thus the model became a binary
classifier  with  deviations  from  this  being  labelled  as
damaged  berries.  Accuracy  for  this  approach  was  much
higher with 92% of damaged berries labelled as such. This
is an interesting approach that potentially could generalise
to  many  other  pathogens  without  re-training  the  model,
though more work is needed in this regard.

III. Discussion
Machine-learning  and  data  science  in  precision

viticulture  is  a  nascent  field  still  in  its  early  stages  of
development,  many  of  the  current  studies  focus  on  lab-
based imagery [9], [10], [11], [12], [13], [22] (see Table 1.).
Which,  while  useful  as  proof  of  concepts,  have  limited
applications to the field in their current form. Accuracy for
these lab based approaches, however, is generally excellent
with  most  lab  based  approaches  reaching  over  90%
accuracy for the chosen pathogen [10], [11], [22] except for
some  asymptomatic  infections  [9],  [12],  [13].  The
controlled  environment  of  these  approaches  leads  to
successful  knowledge  finding,  especially  in  the  field  of
hyperspectral  imagery  where  spectral  quantisation  and
variable  clustering  enables  researchers  to  find  specific
disease indicators not visible to the human eye [9],  [11],
[12],  [13].  The approaches use traditional  ML techniques
and deep  learning  all  with  good results,  however  all  the
approaches except Rudenko et al. [22] are significantly 
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Table 1: Comparison of models, training techniques and data-sets. 
Green denotes real-time and/or edge based compute. 



compute  intensive  and  not-suitable  for  real  time
applications,  either  in  the  pre-processing or  classification
model.  As  such  this  review  cannot  make  any  specific
recommendations for these approaches to on-farm practical
uses, except to say that further research is needed to take
these  lab  based  approaches  into  the  field.  Hyperspectral
imagery is also an interesting area of research that needs to
be further studied, the suitability of current hyperspectral
imaging devices to the field needs to be established.

The remainder of the studies in this review used images
or sensor data gathered in the field and they can further be
split  up  into  two  relevant  sections.  Real-time  detection
models and models that were either not tested in a real time
capacity or the computer requirements were too high. Table
1 highlights the real-time and edge compatible models in
green, we can see that of the recent studies published in the
field they represent less than a third. 

Starting  with  the  non  real-time  models  there  was  a
ResNet CNN model trained on static images of insects [16],
this  model  ran  on modern smartphones  (an  edge device)
however the compute complexity of the model meant that
classifying one image took over a minute, well below the
five frames a second needed for real time. There were also
two CNN based models, one a basic CNN [8] and the other
a Variational Autoencoder [27], detecting different disease
states of the grapevine , both these models were not tested
in a real time capacity. However the complexity of CNN
models hints that  they may not be suitable for  computer
limited  environments.  A  YOLOv5  was  also  the  best  at
detecting diseased bunches but this was only used on static
images  of  grape  bunches  [26],  as  previously  discussed
YOLO  models  are  remarkably  lightweight  for  their
accuracy and thus this model does look promising in a real-
time application  but  it  was  never  tested.  Lastly  a  simple
Random Forest  model  simply classify pixels  of  an aerial
image of a vineyard [24], due to the low complexity of this
model it would be easily run on edge compatible devices in
a real time manner but the real problem with this approach
is vine tracking. The model needs to keep track of canopy
sizes of each individual vine, with a static aerial image it is
quite easy by simply taking the same image from the same
spot  every  time  but  in  moving  video  this  becomes  a
significant hurdle.

For real-time field based models we are left  with only
three studies in the last  three years,  interestingly they all
use different types of data to train their models. Firstly a
hybrid  approach  to  bird  song  detection  whereby  a  local
SVM and cloud-based CNN were trained on four second
snippets  to  identify  starlings  [6].  This  approach  was
successful in that the SVM model was lightweight enough
to  operate  on  IOT  devices  in  real-time  and  the  hybrid
approach  limited  network  bandwidth.  Secondly  a  simple
Random  Forest  algorithm  was  trained  on  environmental
IOT  sensor  data  to  detect  periods  of  time  conducive  to
fungal pathogen growth [7],  interestingly this study did not

detect  the pathogen itself but  predicted periods of  fungal
spread.  The  algorithm  was  lightweight  enough  to  run
continuously in  real-time though it  was  run in  the cloud
with  streamed  data  as  opposed  to  on  the  IOT  devices
themselves,  limiting  its  usage  to  farms  with  good
connectivity. Lastly the most applicable study to real-time
pathogen detection was work done by Tang  et al. [20] to
train a  YOLOv5 model  on video  taken  from commodity
smartphones  mounted  to  a  trailer  and  towed  through  a
vineyard. Initially trained on 15000 grapevine images the
model was able to run at at least 5 frames a second for the
entire run through the vineyard block while maintaining a
high  accuracy  when  detecting  Eutypa  Dieback  severity.
Representing true real-time detection and mapping this is a
landmark  study,  however  it  is  also  limited  in  its
applicability to other pest and diseases. This is because it
exploits the ability of YOLO models to easily detect object
boundaries,  from  the  size  of  the  cordon  ‘objects’  (see
Figure 1) canopy size is inferred and thus dieback severity.
The  model  does  not  ‘understand’  the  images,  merely
measures their size, it is this simplicity that lets the model
run in real time on edge devices.

If we focus on computer vision the current state of the art
in ML for grapevine pest detection therefore can be split
into two camps. Firstly there are highly specialised models
that  can  in  some  ways  ‘understand’  the  images  that  are
portrayed.  These  models  have  high  accuracy  and  can
discriminate different pathogens to a high degree however
they do not generalise well and need images to be a certain
form  before  they  can  be  used  see  [10],  [13],  [16]  for
examples. They are not necessarily good at object detection
or  bounding  in  a  real-time  situation,  this  is  for  more
specialised  object  bounding  networks  such  as  YOLO
models [21] which are the second group. These models are
more  computationally  efficient  and  have  been  shown  to
have  good  success  at  detecting  cordon  size  [20]  and
detecting bunches [26]. It is this differentiation that is the
fundamental finding of this review, to create future models
that work on compute-limited edge devices on field data we
must embrace this difference. The framework proposed in
this  review  for  future  research  centres  around  utilising
lightweight  object  bounding  neural  networks,  such  as
YOLO models, to detect objects of interest in the vineyard
such as leaves or bunches. This model could be trained to
store static images of these objects which could be utilised
in a data pipeline similar to [15] whereby the images are
stabilised, corrected and standardised. With these images in
hand they  can  then  be  fed  into  more  specialised  models
which can detect specific pathogens, this could be done by
multiple  different  models  or  similar  to  [27]  detect  any
variations from a ‘healthy’ plant state. This framework is
outlined descriptively in Figure 2.

VOLUME 01, 2024 1



FIGURE 2. Demonstrates the two-tier framework. Lightweight models 
on-farm generate standard image datasets of the vineyard which are 
either transferred to the computing infrastructure on-farm or on the 
cloud. There more complex models inference on the data and provide 
information for a decision support system.

The proposed framework for researching computer vision
in viticulture has many benefits, the biggest hurdle to the
application of ML in pest detection is getting the data out to
the grower in a useful way. It is only by finding practical,
on-farm  and  easy  to  use  solutions  that  provide  accurate
results will the technology then be adopted. By creating this
two-model approach it would allow simple models to run
on edge hardware, for example a smartphone mounted on a
spray  rig  behind  a  tractor.  This  initial  model  could  use
object detection to determine the appropriate objects to the
specific task or could even be a generic model that simply
catalogues vines. This model could automate the collection
of photographs of vines and standardise them, thus creating
vast datasets of standard images that other more complex
models could then classify. This hybrid model enables the
use of  cheap  commodity hardware  on the farm to easily
generate standard data from the noise of a farming system. 

The non-vision related ML systems employed in [6], [7]
are  similar  in  scope  to  the  proposed  visual  framework
above, Cinkler  et al. [6] employed a two tier system with
the smaller model efficient enough to run on IOT devices
on the field. Larger, more accurate models were employed
in the cloud and only run when the smaller model reached a
certain confidence level.  Hnatiuc  et al. [7]  did not use a
two tier model system however they did use an IOT sensor 
network to generate a data-set of environmental conditions.
This  dataset  could  then  be  fed  into  any  number  of
specialised  models  in  the  cloud,  similar  to  a  two  tier
system.  The  first  model  creates  a  generic  data-set

automatically with which further inferences can then be 
ascertained through specialised models.

IV. Future Work
As described state of ML and data-science in viticultural

pest management is nascent and evolving, with much work
to be done until it can generate actionable information that
growers  can  use  in  their  decision  making.  This  work
provides  a  framework  with  which  more  research  can  be
conducted,  there  is  a  need  to  generate  a  real-time
lightweight  model  that  can  automate  the  process  of
generating  images  of  grapevines  and  their  relevant
structures. 

Much work today has been on specialised models using
data-sets generated only for that body of work. The ability
for  these  models  to  generalise  across  different  data-sets
and/or real world collected images needs to be addressed.
Just as in field crops [14] there is a need for the creation of
published  test  data-sets  that  can  compare  models
objectively,  the  siloed  nature  of  current  research  makes
independent  comparison  difficult  and  meaningless.  This
would  allow  for  the  creation  and  comparison  of  the
specialised models needed to work on the data-sets created
by smaller object detecting field models. This work shows
the  ability  for  both  deep  learning  and  traditional  ML
models to be effective in the field, both should be included
in further research.

Finally more work is needed to create the smaller edge
models that  will  run in the field,  promising areas  in this
respect  are the lightweight YOLO models that have been
shown to  run  on  modern  smartphones  with  good results
[20].  These  models  can detect  objects  in  real-time video
footage captured by the phones, however the technology for
the central thesis of this review, the creation of standardised
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image data-sets from YOLO models,  needs to be created
and is a significant area of potential future study.

V. Conclusion
The potential of ML in viticulture for pest and disease

management remains strong, with this review outlining the
many accurate models classifying images, video, audio and
environmental  sensor data.  Currently most work is siloed
without standardisation of data-sets or comparison testing,
it is mostly in the proof of work concept stage. Much of the
work  occurs  in  a  lab  setting  or  uses  hardware  that  is
inappropriate for on-farm field work such as GPU compute
heavy neural networks. As such their remains a gap for on-
farm edge compatible models that can create real value for
grape growers.

This review proposes a framework for future research, a

two tier system whereby a at the lower tier a simpler object
detection  deep  learning  framework  is  used  to  generate
standardised  image  datasets  of  vineyard  blocks.  These
datasets could then be either moved to the cloud or on-farm
computer infrastructure upper tier where more specialised
models  could  be  used  to  classify  specific  pathogens  and
their severity. These models could be either deep learning
or traditional data-mining as both have been shown to be
effective in difference scenarios. This solves the problem of
limited compute and network connectivity  on farm while
also creating a pathway for standardised model testing and
comparison. It also simplifies future model research in that
when training a new model on a novel pathogen existing
data-sets and data-collection methods can be utilised in a
plug and play manner.

APPENDIX 
Abbreviations

 CNN – Convolutional Neural Network
 RGB – Red/Green/Blue (optical wavelengths)
 mAP – mean Average Precision
 YOLO – You Only Look Once neural network model

(outlined in [21])
 SVM – Support Vector Machine
 IOT – Internet of Things
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